Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M.
نویسندگان
چکیده
Sepsis results in a state of relative immunosuppression, rendering critically ill patients susceptible to secondary infections and increased mortality. Monocytes isolated from septic patients and experimental animals display a "deactivated" phenotype, characterized by impaired inflammatory and antimicrobial responses, including hyporesponsiveness to LPS. We investigated the role of the LPS/TLR4 axis and its inhibitor, IL-1 receptor-associated kinase-M (IRAK-M), in modulating the immunosuppression of sepsis using a murine model of peritonitis-induced sepsis followed by secondary challenge by intratracheal Pseudomonasaeruginosa. Septic mice demonstrated impaired alveolar macrophage function and increased mortality when challenged with intratracheal Pseudomonas as compared with nonseptic controls. TLR2 and TLR4 expression was unchanged in the lung following sepsis, whereas levels of IRAK-M were upregulated. Macrophages from IRAK-M-deficient septic mice produced higher levels of proinflammatory cytokines ex vivo and greater costimulatory molecule expression in vivo as compared with those of their WT counterparts. Following sepsis and secondary intrapulmonary bacterial challenge, IRAK-M(-/-) animals had higher survival rates and improved bacterial clearance from lung and blood compared with WT mice. In addition, increased pulmonary chemokine and inflammatory cytokine production was observed in IRAK-M(-/-) animals, leading to enhanced neutrophil recruitment to airspaces. Collectively, these findings indicate that IRAK-M mediates critical aspects of innate immunity that result in an immunocompromised state during sepsis.
منابع مشابه
Interleukin-1 receptor-associated kinase-M suppresses systemic lupus erythematosus.
OBJECTIVES Interleukin-1 receptor-associated kinase (IRAK)-M suppresses Toll-like receptor (TLR)-mediated activation of innate immunity during infection. A similar role was hypothesised for IRAK-M in autoimmunity. METHODS Irak-m-deficient mice were crossed with autoimmune C57BL/6-lpr/lpr mice and detailed phenotype analysis was performed. RESULTS Irak-m deficiency converted the mild autoimm...
متن کاملNeutrophils activate alveolar macrophages by producing caspase-6-mediated cleavage of IL-1 receptor-associated kinase-M.
Alveolar macrophages (AMs) are exposed to respirable microbial particles. Similar to phagocytes in the gastrointestinal tract, AMs can suppress inflammation after exposure to nonpathogenic organisms. IL-1R-associated kinase-M (IRAK-M) is one inhibitor of innate immunity, normally suppressing pulmonary inflammation. During pneumonia, polymorphonuclear neutrophils (PMNs) are recruited by chemotac...
متن کاملPersistent neutrophil dysfunction and suppression of acute lung injury in mice following cecal ligation and puncture sepsis.
Sepsis, both in humans and in rodents, is associated with persistent immunosuppression accompanied by defects in innate immunity during the acute phase of sepsis. Mice were rendered septic by cecal ligation and puncture (CLP) followed by the induction of acute lung injury, employing distal airway deposition of IgG immune complexes, in order to quantitatively evaluate innate immune responses fol...
متن کاملTREM-1 activation alters the dynamics of pulmonary IRAK-M expression in vivo and improves host defense during pneumococcal pneumonia.
Triggering receptor expressed on myeloid cells-1 (TREM-1) is an amplifier of TLR-mediated inflammation during bacterial infections. Thus far, TREM-1 is primarily associated with unwanted signs of overwhelming inflammation, rendering it an attractive target for conditions such as sepsis. Respiratory tract infections are the leading cause of sepsis, but the biological role of TREM-1 therein is po...
متن کاملResponse to Endotoxin Endothelial Junction Protein p120-Catenin in Innate Immune Function of the Adherens
Sepsis-induced acute lung injury is a common clinical disorder in critically ill patients that is associated with high mortality. In this study, we investigated the role of p120-catenin (p120), a constituent of endothelial adherens junctions, in regulating the innate immune function of lungs. In mice in which acute lung injury was induced by i.p. administration of LPS, we observed a rapid decre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 116 9 شماره
صفحات -
تاریخ انتشار 2006